Types of Reactions Predicting Product Practice

Please note that the following reactions are **NOT necessarily** balanced! We are just focusing on types of reactions and predicting products. You can balance them later!

Things to Remember – crossing over to make neutral compounds, diatomics, roman numerals, rewriting water as H(OH), write good formulas and then balance at the end to fix your numbers!

Page Set Up

Q#	Type	Reaction
1		
2		
3		
Etc		

BaCl₂ + H₂O ->

NaBr >

$$(NH_4)(NO_3) + Ba(OH)_2 \rightarrow$$

CaCO₃ + HCl -

K+HCI+

$$Ca(OH)_2 \rightarrow$$
 calcium oxide + water

Na₂S + H₂O →

$$C_6H_8 + O_2 \rightarrow$$

Al + CuSO₄ →

$$K + N_2 \rightarrow$$

Cu + AlCl₃ ÷

assume copper (II) in your product

CuSO₄ + NaOH →

assume copper (I) is in your product

Fe + Cl₂ →

assume iron (IV) is in your product

CaBr₂ + H₂O ->

Al+HNO₃ ÷

MgCO₃ + HCl →

$$C_2H_4 + O_2 \rightarrow$$

 $CO_2 + H_2O$

Ca + CuCl₃ +

$$Ca(OH)_2 + AlBr_3 \rightarrow$$

$$ZnSO_4 + Ca(OH)_2 \rightarrow$$

Zn + AIN ->

$MgCl_2 + H_2O \rightarrow$

Zn + CuCl₂ →

$$C_6H_{10} + O_2 \rightarrow$$

NaF + H₂O ->

$$Na_2O_2 \rightarrow sodium oxide + oxygen$$

$$C_4H_8 + O_2 \rightarrow$$

$Cl_2 + NiI_2 \rightarrow$

assume nickle(I) is in your product

CuO >

$CaCO_3 \rightarrow$ calcium oxide + carbon dioxide

AgNO₃ + NaCl →

$$C_2H_2 + O_2 \rightarrow$$

$$Ca + Cl_2 \rightarrow$$

Br₂ + KF ->